Пропустить навигацию.
Главная
Ученье - свет...

Точное Земледелие

  • warning: Creating default object from empty value in /home/landv0/public_html/landviser.net/sites/all/modules/i18n/i18ntaxonomy/i18ntaxonomy.pages.inc on line 34.
  • user warning: Table 'landv0_drp626net2.biblio_citeproc_styles' doesn't exist query: SELECT parent,csl FROM biblio_citeproc_styles WHERE filename = 'ama.csl' in /home/landv0/public_html/landviser.net/sites/all/modules/biblio/modules/CiteProc/biblio_citeproc.module on line 88.
  • Biblio-CiteProc could not fetch the style file: ama.csl from the database.
Точное земледелие - технологии для сбалансированного внесения удобрений и гербицидов на конкретном участке поля

Frequently asked questions (FAQ) on electrical geophysical equipment and software

How to convert conductivity to resistivity?

Are there any difference between LandMapper ERM-01 and other equipment available on the market?

How your equipment calculates electrical resistivity?

How to calculate geometrical coefficient K?

Does electrical resistivity correlate with any soil properties?

Can your equipment measure electrical resistivity/conductivity in soil and water samples?

How to determine the depth of the measurements?

More help...

How to convert conductivity to resistivity?

Electrical resistivity (ER) is reciprocal to conductivity (EC) and results can be easily recalculated using formula EC=1/ER or vice versa ER=1/EC. Electrical resistivity is more convenient to use on non-saline soils, where conductivity can be mSm/m, while resitivity measures in 102-103 Ohm m range. 1000 Ohm m equals 1 mSm/m. You can find more conversions to ppm, TDS, grains of salt in this flyer.

Sign up for webinar "Application of Geophysical Methods to Agriculture: Methods Employed"

Dr. Larisa Golovko (President of Landviser, LLC) will be presenting "Geophysical Methods of Electrical Resistivity and Self-Potential in Agriculture" in first of 

 

 

Agricultural Geophysics Webinar Series: "Application of Geophysical Methods to Agriculture: Methods Employed"

A live webinar on the application of geophysics to agriculture will be offered on:

Tuesday, February 18, 2014, from 3pm - 4:30pm EST
(2:00 - 3:30 CST, 1:00 - 2:30 MST, 12:00 - 1:30 PST)

This first in a series of agricultural geophysics webinars will focus on the near-surface geophysical methods presently being used for agricultural purposes, which include resistivity, self-potential, electromagnetic induction, ground penetrating radar, dielectric sensors, VIS/NIR/MIR spectrometry, gamma ray spectrometry, mechanical soil compaction sensors, and ion selective potentiometry. Five presenters will provide a short overview of agricultural geophysical methods during the first 30 minutes of the webinar. The last hour of the webinar will be devoted to a panel discussion with the presenters, who will answer questions from the audience.

Местоположение

28° 8' 11.7564" N, 90° 50' 5.8596" W

AEMP-14 - Multi-frequency Electro-Magnetic Induction Sounding

Landviser, LLC is offering advanced equipment for multi-frequency electromagnetic sounding and profiling - AEMP-14 - manufactured by KB Electrometry Ltd in Novosibirsk, Russia.

Price of the system ordered through us is the same as listed on Nemfis.ru. Registered website users can view price of for the complete AEMP-14 system including field hand-held PDA, GPS, laptop with pre-loaded EM interpretation software and training videos in current catalog 

Please, request your personalized quotation from us: info@landviser.com or call 1-609-412-0555 / 1-888-306-LAND. The system is shipped worldwide from Russia, shipping costs will vary. See specification table at the bottom of this page on estimated weight of the system and components.

Electrical Geophysical Methods in Agriculture

Larisa presented paper and conducted workshop on "Electrical Geophysical Methods in Agriculture" at 4th International Symposium on Intelligent Information Technology in Agriculture (ISIITA) in Beijing, China.

Зависимости УЭС от почвенных свойств – параметров окультуренности

Для более корректного и строго обоснованного применения электрических параметров для оценки степени окультуренности  необходимо выяснить зависимости между ними и базовыми свойствами почв характеризующими степень окультуренности. Среди них наиболее важными представляются грансостав (физглина - частицы меньше 0,01 мм), характеризущий физическое состояние почв: гумус, характеризующий плодородие  (С%) и емкость катионного обмена (ЕКО мг-экв./100г).

В первую очередь при анализе  зависимостей, конечно, встает вопрос выбора вида зависимости.

Электрическое сопротивление как показатель степени окультуренности

Электрическое сопротивление измерялось по профилю всех изученных разрезов (рис. 4). Измерения показали, что величины электрического сопротивления неокультуренных, или целинных (разрез №1) и окультуренных (разрез №4 и №5) почв сильно разнятся. Также по данным кривым прослеживается дифференциация профиля почв, что в целом подтверждается морфологическим строением почвы. Особо следует отметить, что для поверхностных (до глубины 10 см) пахотных горизонтов  агропочв, подверженных ежегодной систематической обработке, выявляется заметная дифференциация величин электрического сопротивления.

Результаты и обсуждение

Сравнительное изучение морфологического описания разрезов, сделанных на ключевых участках разного временного интервала освоения – контрольный  объект (0 лет) – производственный пахотный массив (60 лет) – почвы поселений (>100 лет) выявило влияние степени окультуренности почвы на строение ее профиля. Прежде всего, следует отметить маломощность гумусового горизонта естественных почв (разрез №1). При увеличении возраста освоения 0-60-100 лет выявлено заметное увеличение суммарной мощности гумусовых горизонтов – 15-35-44 см соответственно (рис. 2).

Введение

Длительное использование почв как средства сельскохозяйственного производства приводит к изменениям природных процессов почвообразования и свойств почв, т.е. к формированию новых культурных почв.

Можно полагать, что процесс изменения природных свойств почвы с целью создания и постоянного поддержания высокого уровня плодородия под воздействием производственной деятельности человека, называется окультуриванием почвы.

Evaluating cultivation level of sandy soils in European Russia with electro-geophysical methods

Electrical resistivity vs cultivation degree of sandy soils Update: Full PDF of the paper is now available!

Electrical resistivity of cultivated sandy soils of humid areas is a complex characteristic based on three fundamental properties of soil matrix, such as soil texture, total organic matter (carbon content) and cation exchange capacity (CEC). Relationship of electrical resistivity (ER) with those properties has been approximated with exponential equation ER=a*exp(-b*x), where x is any of the properties above. The correlation coefficients for ER as function of CEC, texture, or organic matter were between 0.82 and 0.91 for the soils of Klin-Dmitrov watershed near Moscow and Kirov, which suggests their applicability for other humid areas. We present a new approach to approximate exponential relationship ER=a*exp(b*x) with a linear “piece-wise” function based on the age of cultivation for each field.This approach was used to develop management zones based on ER to separate uniform areas of similar organic matter, CEC and clay content. Those basic properties are the foundation of soil fertility in humid areas. They influence biomass and bioactivity of soil microorganisms, thus the exponential relationship between ER and soil microorganisms was also observed. The approach based of electrical resistivity or conductivity was used to evaluate fertility and degree of cultivation of sandy soils in humid areas and for detail soil mapping and delineation of management zones in adaptive precision agriculture. The field and laboratory electrical geophysical methods are recommended for quick and accurate soil mapping and management in sustainable farming.

*at SAGEEP 2013, March 17-21 in Denver, CO, Larisa Golovko, Ph.D. will also present "Basic Theory of Measuring Electrical Resistivity, Conductivity and Self-Potential in Soils and Plants" with LandMapper ERM-02 and other commercially available geophysical equipment at post-conference workshop "Agricultural Geophysics: Theory and Methods".
SAGEEP 2013 logo
Cite this presentation as:

Anatoly Pozdnyakov, P.I. Eliseev, Larisa Golovko, Lev A. Pozdnyakov, Maria S. Dubrova, and E.P. Makarova. “Evaluating Cultivation Level of Sandy Soils in European Russia with Electro-geophysical Methods.” In New Views of the Earth. Denver, CO: Environmental and Engineering Geophysical Society, 2013. http://www.eegs.org/AnnualMeetingSAGEEP/SAGEEP2013/SessionsAbstracts.aspx

 

Locations

Denver 39° 44' 15.2412" N, 104° 59' 4.9848" W
Klin, MOS 56° 19' 18.5304" N, 36° 42' 30.8772" E
KIR 58° 36' 16.8984" N, 49° 39' 58.5504" E
Ленты новостей